3.246 \(\int \frac {x^3 (a+b \sin ^{-1}(c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=412 \[ \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}+\frac {4 i b \sqrt {1-c^2 x^2} \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c^3 d \sqrt {d-c^2 d x^2}} \]

[Out]

-2*b^2*(-c^2*x^2+1)/c^4/d/(-c^2*d*x^2+d)^(1/2)+x^2*(a+b*arcsin(c*x))^2/c^2/d/(-c^2*d*x^2+d)^(1/2)-4*a*b*x*(-c^
2*x^2+1)^(1/2)/c^3/d/(-c^2*d*x^2+d)^(1/2)-4*b^2*x*arcsin(c*x)*(-c^2*x^2+1)^(1/2)/c^3/d/(-c^2*d*x^2+d)^(1/2)+2*
b*x*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)/c^3/d/(-c^2*d*x^2+d)^(1/2)+4*I*b*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2
*x^2+1)^(1/2))*(-c^2*x^2+1)^(1/2)/c^4/d/(-c^2*d*x^2+d)^(1/2)-2*I*b^2*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))*
(-c^2*x^2+1)^(1/2)/c^4/d/(-c^2*d*x^2+d)^(1/2)+2*I*b^2*polylog(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))*(-c^2*x^2+1)^(1/
2)/c^4/d/(-c^2*d*x^2+d)^(1/2)+2*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^4/d^2

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 412, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {4703, 4677, 4619, 261, 4715, 4657, 4181, 2279, 2391} \[ -\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,-i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c^3 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(-4*a*b*x*Sqrt[1 - c^2*x^2])/(c^3*d*Sqrt[d - c^2*d*x^2]) - (2*b^2*(1 - c^2*x^2))/(c^4*d*Sqrt[d - c^2*d*x^2]) -
 (4*b^2*x*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(c^3*d*Sqrt[d - c^2*d*x^2]) + (2*b*x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[
c*x]))/(c^3*d*Sqrt[d - c^2*d*x^2]) + (x^2*(a + b*ArcSin[c*x])^2)/(c^2*d*Sqrt[d - c^2*d*x^2]) + (2*Sqrt[d - c^2
*d*x^2]*(a + b*ArcSin[c*x])^2)/(c^4*d^2) + ((4*I)*b*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSin[c
*x])])/(c^4*d*Sqrt[d - c^2*d*x^2]) - ((2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I)*E^(I*ArcSin[c*x])])/(c^4*d*S
qrt[d - c^2*d*x^2]) + ((2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, I*E^(I*ArcSin[c*x])])/(c^4*d*Sqrt[d - c^2*d*x^2]
)

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4181

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4619

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
(x*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4657

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4703

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e*(p +
1)), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*f*n*d^IntPart[p]*(d + e*x^2
)^FracPart[p])/(2*c*(p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && Gt
Q[m, 1]

Rule 4715

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(e*(m + 2*p + 1)), x] + (Dist[(f^2*(m - 1))/(c^2*(m
 + 2*p + 1)), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*f*n*d^IntPart[p]*(d + e*
x^2)^FracPart[p])/(c*(m + 2*p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a +
b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[m,
 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 \int \frac {x \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx}{c^2 d}-\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{1-c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}-\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{1-c^2 x^2} \, dx}{c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (4 b \sqrt {1-c^2 x^2}\right ) \int \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x}{\sqrt {1-c^2 x^2}} \, dx}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}-\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \sec (x) \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {\left (4 b^2 \sqrt {1-c^2 x^2}\right ) \int \sin ^{-1}(c x) \, dx}{c^3 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (4 b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x}{\sqrt {1-c^2 x^2}} \, dx}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 i b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 i b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {4 a b x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \left (1-c^2 x^2\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {4 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {2 b x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^4 d^2}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^4 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.60, size = 369, normalized size = 0.90 \[ \frac {-2 a^2 c^2 x^2+4 a^2+4 a b \sqrt {1-c^2 x^2} \log \left (\cos \left (\frac {1}{2} \sin ^{-1}(c x)\right )-\sin \left (\frac {1}{2} \sin ^{-1}(c x)\right )\right )-4 a b \sqrt {1-c^2 x^2} \log \left (\sin \left (\frac {1}{2} \sin ^{-1}(c x)\right )+\cos \left (\frac {1}{2} \sin ^{-1}(c x)\right )\right )+6 a b \sin ^{-1}(c x)-2 a b \sin \left (2 \sin ^{-1}(c x)\right )+2 a b \sin ^{-1}(c x) \cos \left (2 \sin ^{-1}(c x)\right )-4 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )+4 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )-4 b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x) \log \left (1-i e^{i \sin ^{-1}(c x)}\right )+4 b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x) \log \left (1+i e^{i \sin ^{-1}(c x)}\right )+3 b^2 \sin ^{-1}(c x)^2-2 b^2 \sin ^{-1}(c x) \sin \left (2 \sin ^{-1}(c x)\right )-2 b^2 \cos \left (2 \sin ^{-1}(c x)\right )+b^2 \sin ^{-1}(c x)^2 \cos \left (2 \sin ^{-1}(c x)\right )-2 b^2}{2 c^4 d \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(4*a^2 - 2*b^2 - 2*a^2*c^2*x^2 + 6*a*b*ArcSin[c*x] + 3*b^2*ArcSin[c*x]^2 - 2*b^2*Cos[2*ArcSin[c*x]] + 2*a*b*Ar
cSin[c*x]*Cos[2*ArcSin[c*x]] + b^2*ArcSin[c*x]^2*Cos[2*ArcSin[c*x]] - 4*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x]*Log[
1 - I*E^(I*ArcSin[c*x])] + 4*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x]*Log[1 + I*E^(I*ArcSin[c*x])] + 4*a*b*Sqrt[1 - c
^2*x^2]*Log[Cos[ArcSin[c*x]/2] - Sin[ArcSin[c*x]/2]] - 4*a*b*Sqrt[1 - c^2*x^2]*Log[Cos[ArcSin[c*x]/2] + Sin[Ar
cSin[c*x]/2]] - (4*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] + (4*I)*b^2*Sqrt[1 - c^2*x^2]*P
olyLog[2, I*E^(I*ArcSin[c*x])] - 2*a*b*Sin[2*ArcSin[c*x]] - 2*b^2*ArcSin[c*x]*Sin[2*ArcSin[c*x]])/(2*c^4*d*Sqr
t[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b^{2} x^{3} \arcsin \left (c x\right )^{2} + 2 \, a b x^{3} \arcsin \left (c x\right ) + a^{2} x^{3}\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*x^3*arcsin(c*x)^2 + 2*a*b*x^3*arcsin(c*x) + a^2*x^3)*sqrt(-c^2*d*x^2 + d)/(c^4*d^2*x^4 - 2*c^2*d
^2*x^2 + d^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.54, size = 830, normalized size = 2.01 \[ -\frac {a^{2} x^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {2 a^{2}}{d \,c^{4} \sqrt {-c^{2} d \,x^{2}+d}}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) x}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} x^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, x}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {4 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)

[Out]

-a^2*x^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+2*a^2/d/c^4/(-c^2*d*x^2+d)^(1/2)+2*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d^2/(c^2
*x^2-1)*(-c^2*x^2+1)^(1/2)*arcsin(c*x)*x+b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)^2*x^2-2*b^
2*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*x^2-2*b^2*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^2*x^2-1)*arcsin(c*x)^
2+2*b^2*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^2*x^2-1)-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^
2*x^2-1)*arcsin(c*x)*ln(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^4/d^
2/(c^2*x^2-1)*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)
/c^4/d^2/(c^2*x^2-1)*dilog(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))+2*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c
^4/d^2/(c^2*x^2-1)*dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+2*a*b*(-d*(c^2*x^2-1))^(1/2)/c^3/d^2/(c^2*x^2-1)*(-c^
2*x^2+1)^(1/2)*x+2*a*b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*x^2-4*a*b*(-d*(c^2*x^2-1))^(1/2)
/c^4/d^2/(c^2*x^2-1)*arcsin(c*x)+2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^2*x^2-1)*ln(I*c*x+
(-c^2*x^2+1)^(1/2)+I)-2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1
)^(1/2)-I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -a b c {\left (\frac {2 \, x}{c^{4} d^{\frac {3}{2}}} + \frac {\log \left (c x + 1\right )}{c^{5} d^{\frac {3}{2}}} - \frac {\log \left (c x - 1\right )}{c^{5} d^{\frac {3}{2}}}\right )} - 2 \, a b {\left (\frac {x^{2}}{\sqrt {-c^{2} d x^{2} + d} c^{2} d} - \frac {2}{\sqrt {-c^{2} d x^{2} + d} c^{4} d}\right )} \arcsin \left (c x\right ) - a^{2} {\left (\frac {x^{2}}{\sqrt {-c^{2} d x^{2} + d} c^{2} d} - \frac {2}{\sqrt {-c^{2} d x^{2} + d} c^{4} d}\right )} + \frac {\frac {1}{3} \, {\left (3 \, {\left (c^{2} x^{2} - 2\right )} \sqrt {c x + 1} \sqrt {-c x + 1} \sqrt {d} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} - \frac {{\left (c^{6} d^{2} x^{2} - c^{4} d^{2}\right )} {\left (c^{4} d^{2} \int \frac {2 \, {\left (c^{3} x^{3} - 3 \, c x\right )} e^{\left (\frac {1}{2} \, \log \left (c x + 1\right ) + \frac {1}{2} \, \log \left (-c x + 1\right )\right )} + 3 \, e^{\left (\frac {1}{2} \, \log \left (c x + 1\right ) + \frac {1}{2} \, \log \left (-c x + 1\right )\right )} \log \left (c x + 1\right ) - 3 \, e^{\left (\frac {1}{2} \, \log \left (c x + 1\right ) + \frac {1}{2} \, \log \left (-c x + 1\right )\right )} \log \left (-c x + 1\right )}{c^{7} d^{2} x^{4} - c^{5} d^{2} x^{2} - {\left (c^{5} d^{2} x^{2} - c^{3} d^{2}\right )} {\left (c x + 1\right )} {\left (c x - 1\right )}}\,{d x} + 2 \, {\left (c^{3} x^{3} - 3 \, c x\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) + 3 \, \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) \log \left (c x + 1\right ) - 3 \, \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) \log \left (-c x + 1\right )\right )}}{c^{4} d^{\frac {3}{2}}}\right )} b^{2}}{c^{6} d^{2} x^{2} - c^{4} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

-a*b*c*(2*x/(c^4*d^(3/2)) + log(c*x + 1)/(c^5*d^(3/2)) - log(c*x - 1)/(c^5*d^(3/2))) - 2*a*b*(x^2/(sqrt(-c^2*d
*x^2 + d)*c^2*d) - 2/(sqrt(-c^2*d*x^2 + d)*c^4*d))*arcsin(c*x) - a^2*(x^2/(sqrt(-c^2*d*x^2 + d)*c^2*d) - 2/(sq
rt(-c^2*d*x^2 + d)*c^4*d)) + ((c^2*x^2 - 2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*sqrt(d)*arctan2(c*x, sqrt(c*x + 1)*sq
rt(-c*x + 1))^2 - (c^6*d^2*x^2 - c^4*d^2)*sqrt(d)*integrate(2*(c^2*x^4 - 2*x^2)*arctan2(c*x, sqrt(c*x + 1)*sqr
t(-c*x + 1))/(c^3*d^2*x^2 - c*d^2), x))*b^2/(c^6*d^2*x^2 - c^4*d^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x^3*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________